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Analysis of the heat transfer of an impinging laminar flame jet
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Abstract

Flame jet impingement is used in many industrial processes. In this paper an analytical expression is derived for the heat flux of a
laminar flame impinging on a flat plate, where the flame jet is approximated by a hot inert jet with the position of the tip of the flame
taken equal to the nozzle position. The heal flux in this expression is dependent on the nozzle-to-plate spacing, in contradiction to exist-
ing (semi-analytical) relations. The geometry is divided in a region far from the plate and a region dose to the plate. For both regions the
velocity profiles are calculated using only the dominant terms of the balance equations. Subsequently these profiles are linked to each
other at the boundary between the two zones. Implementing the resulting velocity profile for the complete geometry in the energy equa-
tion and integrating over the whole domain results in an expression for the heat flux from the flame to the plate at the hot spot. Numer-
ical calculations show very good agreement with the results of the analytical derivation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Jet impingement is widely used in industrial applications
where high convective heat transfer rates are required.
Applications include drying of textiles, film and paper,
cooling of turbine blades and microelectric components
and heating of glass products. It is well reckoned that these
jets yield very high heat transfer coefficients. A lot of work
is documented on flow behaviour and heat transfer of jets.
Li et al. [1] showed that there exist two different solutions
for the flow field in some range of geometric and flow
parameters. The use of multiple jets results in a wider range
in heat transfer rates and distributions. Aldabbagh and
Sezai described the flow behaviour of multiple impinging
jets numerically [2], while Geers performed experiments
on flow and heat transfer [3].

Impinging jets are operated in a laminar as well as a tur-
bulent configuration. An impinging jet is observed to be
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laminar up to a Reynolds number of approximately 2500,
based on the nozzle diameter width. Turbulent impinging
jets are observed to yield a higher heat transfer than laminar
jets [4]. Wang and Mujumdar [5] compared several k–e
models for the prediction of the heat transfer of turbulent
impinging jets. Angioletti et al. [6] compared several turbu-
lence models with PIV measurements. Although turbulent
jets are more often encountered in industrial applications,
the jets will be laminar for smaller geometries or viscous flu-
ids. A special case of jets are small flame jets, which are used
in the glass and steel industry where the heat has to be
applied locally for cutting and melting purposes. These
flows are highly viscous because of their high temperatures.
Since these flames are laminar, mixing of ambient air caus-
ing a temperature decrease of the flame is suppressed.

In the last few decades it became more accepted to
increase the amount of oxygen in these flame jets. Enhanc-
ing the amount of oxygen in flame jets is adopted to
increase metal heating and melting rates because of the
higher flame temperature (2300 K for methane–air flames,
3000 K for methane–oxygen flames) and higher gas veloc-
ity [7,8]. Oxygen-enhanced combustion considerably alters
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Nomenclature

a strain rate before the plate [1/s]
cp specific heat at constant pressure [J/(kg K)]
g gravitational vector [m/s2]
h distance burner nozzle to plate [m]
H distance flame tip to plate [m]
I unit tensor
K strain rate [1/s]
_m mass flow [kg/(m2 s)]
p pressure [Pa]
P stress tensor [kg/(m2 s)]
Pr Prandtl number (m/a)
Pe Peclet number (UH/a)
q heat flux [W/m2]
r cylindrical coordinate
R radius of the plug flow [m]
t time [s]
T temperature [K]

u, v Cartesian velocities [m/s]
U velocity of the plug flow [m/s]
v velocity vector [m/s]
x, y Cartesian coordinates [m]
xd viscous boundary layer thickness [m]

Greek symbols

a thermal diffusivity [m2/s]
k conductivity coefficient [W/(m K)]
l dynamic viscosity [kg/(m s)]
m kinematic viscosity [m2/s]
q density [kg/m3]
s stress tensor [kg/(m2 s)]

Subscript

b burnt
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the value and location of the peak heat flux. Baukal and
Gebhart [9] experimentally found that the heat flux to the
target increased by as much as 230% as the fraction of oxy-
gen increased from 0.30 to 1.00 in the oxidizer stream. Fur-
thermore, the peak heat flux did not occur at the stagnation
point for low oxidizer compositions. At high values of the
oxidizer composition however, the peak heat flux did occur
at the stagnation point. The increased heat transfer is the
main reason that nowadays the flame jets are operated with
pure oxygen instead of air.

The flow behaviour of flame jets and hot isothermal jets
is comparable. According to Viskanta [4], the aerodynam-
ics of a single flame jet is very similar to the aerodynamics
of a single isothermal jet. Experiments by Van der Meer
[10] showed that the axial velocity decays slightly faster
for the flame jets than for the isothermal jets, due to the
axial temperature decay. The radial velocity gradients at
the stagnation point are found to be equal. Most studies
concern the stationary flame impinging on a (flat) surface.
Tuttle et al. [11,12] however examined the unsteady charac-
teristics of the impingement heat transfer. Lately, research
has been performed by Dong et al. [13,14] and Kwok et al.
[15,16] concerning the heat transfer characteristics of single
and multiple impinging flame jets and slot and round
impinging flame jets. Zhao et al. [17] found that the thermal
conductivity of the impingement plate provides the major
influence on the heat transfer from the flame jet to the
plate. Since the flow behaviours of flame jets and hot iso-
thermal jets are comparable, we will focus on isothermal
jets in the rest of this paper.

One big difference however exists between flame jets and
isothermal jets if we look at the heat transfer mechanisms
for these jets. The main heat transfer mechanism for
impinging flame jets is forced convection. Increasing the
oxidizer composition results in a higher flame temperature
and burning velocity and therefore a higher gas velocity.
Not only forced convection will be enlarged, but the heat
transfer mechanism called thermochemical heat release
starts to play an important role [18]. These flames contain
a lot of free radicals such as O, H and OH. When these rad-
icals enter the cold boundary layer, they exothermically
recombine and augment the heat transfer. This process
has also been called chemical recombination or convection
vivre. Cremers et al. [19] found that this mechanism for a
hydrogen–oxygen flame causes a heat transfer coefficient
which is twice as high as the heat transfer coefficient for
a chemically frozen mixture. It is clear that chemical
recombination, which is not present in an isothermal jet,
therefore has a big influence on the heat transfer of a flame
jet.

The influence of radiation is very small. According to
Van der Meer [10], the radiation of the flame is negligible
because of the very low emissivity of a hot gas layer of
small thickness. Baukal and Gebhart [18] and Viskanta
[4] also confirmed the minor role of nonluminous radiation.

Although a lot of work is performed on measuring the
heat flux from flame jets to a (flat) surface, simple analyti-
cal expressions for this heat flux are still lacking. From an
engineering point of view, such an expression is very useful
when the heat flux from an impinging flame to a product
needs to be estimated. In this paper, we will derive an ana-
lytical expression for the heat flux from a flame jet to a flat
plate, where the flame jet is approximated by a hot isother-
mal jet. The effect of chemical recombination is not taken
into account. How to involve this effect in the analysis will
be further looked upon in the future.

Heat transfer from an inert jet to a plate has been stud-
ied extensively in the past [20–23]. Sibulkin derived a semi-
analytical relation for the laminar heat transfer of an
impinging flow to a body of revolution [20], which has been
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the basis of most other experimental and theoretical results
since. An important parameter in this relation is the veloc-
ity gradient just outside the boundary layer. This velocity
gradient is a function of the nozzle diameter and the free-
stream velocity, but not of the nozzle-to-plate spacing. In
the analytical solution we present here, the dependence of
the nozzle-to-plate spacing is incorporated.

First the physical configuration is analysed. A sketch of
a flame impinging on a plane surface is shown in Fig. 1.
Four characteristic regions can be distinguished, namely
the flame region, the free jet region, the stagnation region
and the wall jet region. We assume in our analysis that a
plug flow with velocity U and width 2R is formed after
the burnt gases have expanded behind the flame front.
Experiments in our laboratory indeed show that a plug
flow is formed after the flame front for fuel–oxygen flames.
At the edges of the stream tube the velocity of the burnt
gases will rapidly drop. In literature often the distance from
the nozzle to the impingement surface h is used as an inde-
pendent parameter, for inert as well as flame jets. However,
using different fuels while keeping the unburnt gas velocity
constant results in different flame heights because of the
different burning velocities. Therefore, if the distance from
the burner to the plate h is kept constant, the distance from
the flame tip to the plate H will vary for the different fuels.
For this reason, we choose the distance from the flame tip
to the plate H as an input parameter, instead of the dis-
tance from the burner to the plate h. Furthermore it is
assumed that the to be heated product is placed close to
the flame front, compared with the width of the burnt
gas flow ðH < 2RÞ. The configuration therefore reduces
to an effective one-dimensional problem and can be
approached as an isothermal stagnation flow impinging
on a flat surface. An analytical approximation for the heat
flux to the hot spot in this configuration is assessed, where
the width of the hot spot is equal to 2R. The resulting
expression can be used to calculate the local heat flux,
which is of practical interest for cutting and melting pur-
poses. It has to be stated that the globally transferred heat
of a single jet is not calculated. However, the solution is
also applicable for a closely staggered array of holes. The
Flame front
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Fig. 1. Flame impinging normal to a plane surface.
approximation is done for a two-dimensional as well as a
cylinder-symmetrical case by solving the conservation
equations taking only the most important contributions
into account. It is not possible to find the full analytical
solution even though the system is one-dimensional. The
results are therefore validated by numerical calculations
using Fluent [24].

2. Analytical solution for the heat transfer for a

two-dimensional case

For the case of small distances of the flame to the plate,
H < 2R, the situation effectively reduces to a steady one-
dimensional problem. Fig. 2 represents the situation, the
directions for x, y, u and v are chosen according to the fig-
ure. The unburnt gases flow out of a burner nozzle, where-
upon a plug flow is formed after the flame front. The
system behaves as an isothermal potential flow far from
the surface, with a thin boundary layer of thickness xd close
to the surface, where heat transfer processes induce a fast
temperature change. The system is analysed by studying
the transport equations in both regions and coupling the
solutions at the edge of the regions.

We start from the conservation equations of mass and
momentum:

oq
ot
þr � ðqvÞ ¼ 0; ð1Þ

oðqvÞ
ot
þr � ðqvvÞ ¼ �r �Pþ qg; ð2Þ

where g is the gravitational vector [m/s2] and the tensor P
is a short-hand notation for P ¼ pIþ s. Furthermore, p is
the hydrostatic pressure [Pa], I the unit tensor and s the
stress-tensor [kg/(m s2)].

Often the Richardson number Ri is used to determine
the importance of buoyancy in the flow. The Richardson
number is a dimensionless number that expresses the ratio
of potential to kinetic energy. Since Ri ¼ Oð10�5Þ in this
case, the effect of buoyancy is neglected. The jet is inert,
Plate
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Fig. 2. Schematic overview of a 2D stagnation flame.
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Fig. 3. Velocity and strain profile of the burnt gases.
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since we approximate the flame jet by a hot isothermal jet
and take no chemical recombination into account. We
assume that the temperature is a function of the spatial
coordinate x only, so T ¼ T ðxÞ and therefore q ¼ qðxÞ.
Assuming an incompressible flow and using the ideal gas
law p ¼ qRT , qT is a constant. The continuity equation
now yields

oðquÞ
ox
¼ �q

ov
oy
¼ �qK; ð3Þ

where K ¼ om
oy :

If Eqs. (1) and (2) are applied to a region close to the
symmetry plane, the velocity component u will be a func-
tion of x only. Therefore, K is a function of x only. Using
_m ¼ qu and p ¼ pðx; yÞ; v ¼ y � v̂ðxÞ and l ¼ lðxÞ, the
following conservation equations for mass and x- and
y-momentum now hold [25,26]:

d _m
dx
¼ �qK; ð4Þ

op
ox
¼ � _m

du
dx
þ d

dx
2

3
l 2

du
dx
� K

� �� �
þ l

dK
dx

; ð5Þ

_m
dK
dx
þ qK2 � d

dx
l

dK
dx

� �
¼ � 1

y
dp
dy
; ð6Þ

with l the dynamic viscosity [kg/(m s)]. It can be seen from
Eq. (5), that the pressure derivative op=ox is a function of x
only. Differentiation of Eq. (5) with respect to y and chang-
ing the order of differentiation then gives that op=oy is a
function of y only. From Eq. (6) it then follows that
� 1

y
dp
dy is a constant, i.e.

_m
dK
dx
� d

dx
l

dK
dx

� �
¼ J � qK2; ð7Þ

with J ¼ � 1
y

dp
dy. Since this equation should also hold far

from the plate where dK
dx ¼ 0 and d2K

dx2 ¼ 0; J must be equal
to qba2, where a is the strain rate in the free flow and qb

the density of the burnt gases behind the flame front.
Now the relation for the velocity field far from the plate

to the viscous boundary layer, �H < x < �xd, will be
derived. After this, we will derive the relation for the veloc-
ity close to the plate �xd < x < 0 and link the obtained
relations to each other at the edge of the viscous boundary
layer x ¼ �xd, see Fig. 3. If we estimate the order of mag-
nitude far from the plate with OðxÞ ¼ H ;OðKÞ ¼ U=H , and
use Eq. (7), we obtain:

O q
U 2

H 2

� �
þ O l

U

H 3

� �
¼ Oðqa2Þ þ O q

U 2

H 2

� �
: ð8Þ

Since OðaÞ ¼ U=H , it is easy to see that the viscous term is
not relevant far from the plate if H �

ffiffiffiffiffiffiffi
m=a

p
, where m is the

kinematic viscosity [m2/s]. The following equation for the
velocity needs to be solved then:

�uu00 ¼ a2 � u02: ð9Þ

The temperature remains constant far from the plate and
rapidly decreases close to the plate. Therefore far from
the plate u0 ¼ ou
ox ¼ �K, since q ou

ox � u oq
ox and qT is a

constant.
The boundary conditions follow from Fig. 3. At

x ¼ �H ; u ¼ U and K ¼ 0.
The solution is given by

uðxÞ ¼ U sin
�axþ xref

U

� �
; ð10Þ

where a ¼ pU
2H and the value of xref is determined by the

boundary layer thickness xd. Furthermore,

KðxÞ ¼ a cos
�axþ xref

U

� �
: ð11Þ

Eqs. (10) and (11) are valid for �H < x < �xd, but also for
the whole domain if the flow is non-viscous ðxref ¼ 0Þ.
Close to the plate, �xd < x < 0, the terms _m dK

dx and qK2

from Eq. (7) become zero close to the wall, so for x ’ 0
and constant viscosity, Eq. (7) can be approximated by

�l
d2K
dx2
¼ qba2; ð12Þ

indicating a quadratic behaviour as function of x for K in
the viscous boundary layer.

At x ¼ �xd the strain rate K is maximum and equal to
a ’ pU

2H . Using this boundary condition and Kð0Þ ¼ 0, the
strain rate K in the viscous boundary layer can be calcu-
lated. Close to the plate, the density and velocity of the
burnt gas flow can be approximated by

q � q0 þ q0x; u � bx2;

with q0 the density of the burnt gas flow at the flame side of
the plate and b a constant. Since

q
du
dx
� 2bq0x; u

dq
dx
� bq0x2;

and therefore qdu=dx� udq=dx, the strain rate can be
approximated by KðxÞ ¼ � ou

ox.
The velocity solution in the boundary layer equals:

uðxÞ ¼ axd
x3

3x3
d

þ x2

x2
d

� �
; ð13Þ

with xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=ðqaÞ

p
¼

ffiffiffiffiffiffiffiffiffiffi
2m=a

p
. The relations for the veloc-

ity, Eqs. (10) and (13) are linked by the condition that the
strain rate at x ¼ �xd must equal K ¼ a ¼ pU

2H . Now xref can
be calculated and Eq. (10) becomes:
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uðxÞ ¼ U sin
�aðxþ xd=3Þ

U

� �
: ð14Þ

The relation for the heat flux to the plate can be derived if
we consider the energy equation of the burnt gases close to
the heated side of the plate. The heat flux can be calculated
via a balance of conduction and convection. The conserva-
tion equation is given by

qucp
oT
ox
¼ o

ox
k

oT
ox

� �
; ð15Þ

where cp is the heat capacity of the burnt gas flow
[J/(kg K)] and k the conductivity coefficient [W/(m K)].
Substituting the equations for the velocity u results in rela-
tions for the heat transfer from the burnt gas flow to the
glass product. First we determine the heat transfer for a
non-viscous gas flow ðxd ¼ 0Þ. We assume that k is constant
and a ¼ k

qcp
, with a the thermal diffusivity [m2/s], is constant

as well. Numerical calculations indeed show that a can be
considered constant. After substituting Eq. (10) for the
velocity u and integrating x from �H to 0, the heat transfer
is given by

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
H
R 0

�1 exp 2
p Pe cos � p

2
x0


 �
� 1


 �� 

dx0

; ð16Þ

with T ð0Þ the temperature at the hot side of the plate, x0 a
dimensionless coordinate defined by x0 ¼ x=H and Pe the
Peclet number. The Peclet number is a dimension-less
parameter giving the ratio of heat transfer by convection
and conduction:

Pe ¼ UH
a
¼ UHqcp

k
; ð17Þ

For this case, the integral in the denominator of Eq. (16)
can be simplified using a Taylor expansion for the cosine.
The heat transfer can be expressed as follows:

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
1

H

ffiffiffiffiffi
Pe
p

: ð18Þ

If we take viscosity into account to calculate the heat
flux, we make a distinction between the burnt gas flow
region and the viscous boundary layer again. First, we sub-
stitute the relation for the velocity in the boundary layer
(13) in the energy Eq. (15) and integrate from �xd to 0.
Next, we substitute the relation for the velocity in the burnt
gas flow (14) in the energy equation and integrate from
�H to �xd. The heat flux can be calculated using:Z 0

�H

dT
dx
ðsÞds¼

Z 0

�H

oT
ox

				
0

exp �1

a

Z 0

s
udx

� �
ds

¼ oT
ox

				
0

Z �xd

�H
exp �1

a

Z �xd

s
u1 dx

���

þ
Z 0

�xd

u2 dx
��

dsþ
Z 0

�xd

exp �1

a

Z 0

s
u2 dx

� �
ds
�
;

ð19Þ
where u1 is given by Eq. (14) and u2 by Eq. (13). The
expression for the heat flux now results in:

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
M

; ð20Þ

with

M ¼ H
Z 0

�xd=H
exp

p2

96

Pe2

Pr
x04 þ 1

12

ffiffiffiffiffiffiffiffiffiffiffi
Pe2p3

Pr

s
x03

2
4

3
5dx0

þ H
Z �xd=H

�1

exp � 1

2
Pr � 2

p
Pe cos

2

3

ffiffiffiffiffiffiffiffi
pPr
Pe

r ! "

� cos � 1

3

ffiffiffiffiffiffiffiffi
pPr
Pe

r
� px0

2

 !!#
dx0 ð21Þ

and Pr the Prandtl number. The Prandtl number is a
dimensionless number for the ratio of viscosity and thermal
diffusivity: Pr ¼ m=a. In other words, an increasing Prandtl
number denotes an increasing influence of viscosity and
therefore a decrease of heat transfer. Note that for
Pr ¼ 0, the heat transfer equals Eq. (16).

3. Analytical solution for the heat transfer for a cylinder-

symmetrical case

We consider Fig. 4 for the cylinder-symmetrical case,
where the y-direction is replaced by the r-direction. Eqs.
(1) and (2) will be applied to the symmetry plane and, since
R > H , the velocity component u is independent of the
r-direction. Again, we assume that the temperature is a
function of the spatial coordinate x only, so T ¼ T ðxÞ
and therefore q ¼ qðxÞ. Now the steady equations for
conservation of mass and conservation of momentum in
r-direction become:

oðquÞ
ox
þ 1

r
oðqvrÞ

or
¼ 0; ð22Þ

oðquvÞ
ox

þ 1

r
oðqv2rÞ

or
þ op

or
¼ � o

ox
�l

ov
ox

� �
: ð23Þ
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Substituting Eq. (4) and v ¼ r � v̂ðxÞ in Eq. (22) gives

ov
or
¼ 1

2
K: ð24Þ

Now, together with _m ¼ pu, the equations of x- and r-
momentum become [25,26]:

op
ox
¼ � _m

du
dx
þ d

dx
2

3
l 2

du
dx
� K

� �� �
þ l

2

dK
dx

; ð25Þ

_m
dK
dx
þ 1

2
qK2 � 2

d

dx
l

dv̂
dx

� �
¼ � 2

r
dp
dr
: ð26Þ

Analogous to the two-dimensional situation, it can be
shown that � 2

r2
dðprÞ

dr is a constant and equal to 1
2
qba2.

Again we decouple the domain in a region consisting of
the flow far from the plate to the viscous boundary layer,
�H < x < �xd, and a region consisting of the viscous
boundary layer, �xd < x < 0. The relations for the velocity
will be linked at x ¼ �xd. Since the viscous term is not
relevant far from the plate, the following equation for the
velocity for �H < x < �xd needs to be solved:

�uu00 ¼ 1

2
a2 � 1

2
u02: ð27Þ

The same boundary conditions as for the two-dimensional
case are used, see Fig. 3. The equations for the velocity and
the strain rate are now given by:

uðxÞ ¼ U � U
aðxþ xrefÞ

2U
þ 1

� �2

; ð28Þ

KðxÞ ¼ a
aðxþ xrefÞ

2U
þ 1

� �
; ð29Þ

where a ¼ 2U=H . Comparing this result with the two-
dimensional case, the strain rate for the axisymmetrical
case is a factor 4=p larger for the same burnt gas velocity
U and distance from the flame front to the plate H. Since
the diverging gases have more directions to flow away from
the axis, the strain rate should be higher indeed.

Close to the plate, _m and K become zero and Eq. (26)
can be approximated for �xd < x < 0 by

�2
d

dx
l

dv̂
dx

� �
¼ 1

2
qa2: ð30Þ

The strain rate K is maximum at x ¼ �xd and equal to
a ¼ 2U=H . Together with Kð0Þ ¼ 0, the strain rate K in
the viscous boundary layer can be calculated. The velocity
relation in the boundary layer is now equal to

uðxÞ ¼ axd
x3

3x3
d

þ x2

x2
d

� �
; ð31Þ

with xd ¼ 2
ffiffiffiffiffiffiffi
m=a

p
. The velocity profile in the burnt gas re-

gion has to be coupled to the velocity profile in the viscous
boundary layer. The strain rate at x ¼ �xd must equal
K ¼ a ¼ 2U=H . Eq. (28) for �H < x < �xd now becomes:

uðxÞ ¼ U � U
aðxþ xd=3Þ

2U
þ 1

� �2

: ð32Þ
We use the same approach to calculate the heat flux from
the burnt gases to the glass product along a region close
to the symmetry plane for the cylinder-symmetrical case
as for the two-dimensional case. To calculate the heat flux
for a non-viscous flow, the relation for the velocity (28) is
substituted in the conservation equation (15). The heat
transfer is now given by:

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
H
R 0

�1 exp½�Peð1
3
x03 þ x02Þ�dx0

; ð33Þ

with x0 ¼ x=H . This relation can not be simplified using a
Taylor expansion like for the two-dimensional case.

For a viscous flow, a distinction between the burnt gas
region and the viscous boundary layer is made. For the vis-
cous boundary layer, the relation for the velocity (31) is
substituted in the energy Eq. (15), followed by the integra-
tion from �xd to 0. The relation for the velocity in the
burnt gas region (32) is also substituted and now integra-
tion takes place from �H to �xd. After summation of these
two terms, the heat flux is found:

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
M

; ð34Þ

with

M ¼ H
Z 0

�xd=H
exp

1

12

Pe2

Pr
x04 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

18

Pe3

Pr

s
x03

2
4

3
5dx0

þ H
Z �xd=H

�1

exp �Pr � Pe
1

3
x03 þ 1

3

ffiffiffiffiffiffiffi
2Pr
Pe

r
x02

 "

þ 1

9

2Pr
Pe

x0 þ 1

9

ffiffiffiffiffiffiffi
2Pr
Pe

r 3

þ x02 þ 2

3

ffiffiffiffiffiffiffi
2Pr
Pe

r
� 1

3

2Pr
Pe

!#
dx0:

ð35Þ
4. Numerical results

4.1. Two-dimensional case

We use Fluent [24] to validate the results of the previous
paragraphs. Fluent is a CFD (Computational Fluid
Dynamics) package with which it is possible to carry out
a numerical analysis and generate solutions of flow and
heat transfer problems. Fluent uses a finite volume method
and the flow calculations are based on the solution of the
Navier–Stokes equations.

Fig. 5(left) shows a picture of a flame jet heating a
quartz plate. The domain for the model used in Fluent is
the layer just before the plate, represented at the right side
of the figure. The flame is not modelled. A plug flow with a
width of 2R impinges on a wall at a distance H. The inflow
of the domain is an inlet boundary where the burnt gases
enter the domain with a velocity of 75 m/s with a temper-
ature of 3000 K. Like for the analytical model, the param-
eters of the burnt gases are chosen to be constant with



Fig. 5. Schematic overview of the Fluent model.
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q ¼ qb ¼ 0:083 kg=m3, cp ¼ 2000 J=ðkg KÞ, l ¼ 5:6� 10�5

kg=ðm sÞ and k ¼ 0:16 W=ðm KÞ. The values for cp; k
and l are chosen at a temperature of 1500 K using
Chem1D [27] and the thermodynamic data from the
GRI-mech 3.0 mechanism. The top side is a wall, which
is fixed at the initial temperature of the glass being
300 K. The left side is a symmetry boundary and the right
side an outlet-pressure boundary. Both the flow and the
temperature fields are solved.

First we check the assumptions we made for the deriva-
tion of the analytical model. It was assumed that q ou

ox > u oq
ox

and therefore K ¼ � ou
ox. Fig. 6 shows both terms plotted

against x. For this particular calculation a temperature
dependent density was used, namely q ¼ 1:1 � ðT =298Þ�106

[27]. The figure shows that far from the plate u oq
ox ¼ 0. Clo-

ser to the plate u oq
ox is not negligible anymore, but q ou

ox still is
the leading term. Therefore, the assumption seems to hold.

In Fig. 7 the separate terms of Eq. (7) are plotted against
x. Far from the wall, the viscous term indeed is not relevant
and therefore there is a balance between the convection
term, the source term and the constant qba2. Very close
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Fig. 6. The terms �q ou
ox (solid line) and u oq

ox (dashed line) plotted against
the distance to the plate x.
to the wall, the convection term and the source term
become zero and the negative diffusion term equals the
constant qba2. The solutions for the velocity profiles far
from the wall and in the viscous boundary layer close to
the plate were linked together at �xd, which is approxi-
mately 0.1 mm. At xd there is a balance between the four
terms, which is not taken into account in the derivation
of the analytical solution. The results of the numerical
calculations will show whether this assumption has a big
influence on the velocity profile.

The velocity profile of the burnt gases from the symme-
try axis up to close to the edge of the stream tube when
H < R was derived earlier for the two-dimensional case.
This velocity profile, Eq. (10) for the potential flow and
Eqs. (13) and (14) for the viscous boundary layer, is com-
pared with the numerical results of Fluent. The solution
for a non-viscous flow with l ¼ 0 is also compared.
Fig. 8 shows the comparison between the analytical and
numerical velocity profiles. The figure shows that the ana-
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Fig. 8. Velocity profiles over the symmetry boundary for non-viscous
(upper two curves) and viscous flows (lower two curves) for the two-
dimensional case. The dashed lines represent the analytical calculations,
the solid lines represent the numerical results.
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lytical model corresponds very well to the numerical model
in both cases.

The strain rate just before the plate determines the heat
flux. A higher strain rate causes a smaller boundary layer
and therefore a higher heat flux. We will now vary the
strain rate a to determine its influence on the heat flux.
With Fluent, contrary to the analytical model, it is also
possible to calculate the velocity profiles if H > R, see
Fig. 9. The width of the gas flow jet is R ¼ 0:5 mm and
the distance to the plate is varied from 4 to 1 mm. The fig-
ure shows that there is no visible difference in the velocity
profiles for distances H ¼ 4 or H ¼ 3 mm. Decreasing the
distance to H ¼ 2 mm only has little influence on the flow
near the plate, but if the distance is decreased to
H ¼ 1 mm, the velocity profile is visibly altered. The dis-
tance to the plate H has no influence on the velocity profiles
for high H=R ratios, therefore the slopes of the velocity
profiles will be the same. The strain rate of the burnt gas
flow can only be increased if the distance to the plate H
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Fig. 9. Velocity profiles over the symmetry boundary for the two-
dimensional case. For the solid line H ¼ 4 mm, for the dashed line
H ¼ 3 mm, for the dashed-dotted line H ¼ 2 mm and for the dotted line
H ¼ 1 mm.
is decreased, i.e. if the ratio H=R is decreased. Since in this
case the strain rate is increased, the heat flux from the
burnt gas flow to the glass product is increased.

The results of the analytical model indicate that for
small H=R ratios the strain rate is given by a ¼ pU

2H. This
relation no longer holds if the H=R ratio increases because
of two-dimensional effects visible in Fig. 9. Fig. 10 shows
the numerical effect of the H=R ratio on the effective strain
rate of the burnt gases a. The factor 2aH=ðpUÞ is set out as
function of H=R. The figure shows that for small H/R val-
ues, 2aH=ðpUÞ is equal to one. This observation is in agree-
ment with the analytical solution. If the distance to the
glass product H and the velocity U are kept constant and
the width of the flow R is decreased, the effective strain rate
a will increase. Furthermore, for a H=R ratio of 4 and
higher and a fixed width of the flow R and velocity U,
the distance to the glass product H has no influence on
the strain rate a. The strain rate a now is a constant, repre-
sented by the straight line indicating that 2aH

pU � H
R or a ¼ pU

2R
independent of H. The effect that for larger distances H no
longer has an effect on the strain rate a, was also shown in
Fig. 9.

The fitted line 2aH=ðpUÞ ¼ 1
2
H=Rþ exp � 1

2
H=R

� 

pre-

dicts the numerical results quite accurately, see Fig. 10.
The temperature profile over the symmetry axis is also

calculated with Fluent. The heat flux to the plate can be
found from q ¼ k oT

ox

		
0
. The heat transfer is calculated for

different Prandtl numbers, ranging from 0 (non-viscous
flow) to 1.

Fig. 11 shows numerical and analytical results of these
calculations for H < R. A distance to the plate of
H ¼ 2 mm and a plug width of R ¼ 20 mm are chosen.
The ratio of the viscous heat transfer and non-viscous heat
transfer is plotted against Pr. The viscous heat transfer is
calculated with Fluent for different Prandtl numbers and
results are given by the asterisks. The non-viscous heat
transfer is calculated with Eq. (16) as well. For a Prandtl
number of 0, the ratio between the viscous heat transfer
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Fig. 11. The ratio of the viscous heat flux and non-viscous heat flux as a
function of the Prandtl number. The dots represent the analytical results,
the asterisks the numerical results; H ¼ 2 mm, R ¼ 20 mm (two-dimen-
sional case).

–2 –1.5 –1 –0.5 0

x 10
3

0

10

20

30

40

50

60

70

80

Distance to the plate [m]

V
el

oc
ity

 [m
/s

]

Fig. 12. Velocity profiles over the symmetry boundary for non-viscous
and viscous flows for the cylinder-symmetrical case. The dashed lines
represent the analytical calculations, the solid lines represent the numerical
results.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

H/R [–]

aH
/(

2U
) 

[–
]

Fig. 13. Relation between aH=ð2UÞ and H=R; the circles represent the
numerical calculations, the solid line the function y ¼ 18

30
xþ exp � 18

30
x

� 

;

x ¼ H=R (cylinder-symmetrical case).

2824 M.J. Remie et al. / International Journal of Heat and Mass Transfer 50 (2007) 2816–2827
and non-viscous heat transfer should be equal to 1. A small
deviation can be observed. For increasing Prandtl number,
the heat transfer should decrease due to an increasing
viscous boundary layer thickness. The dots in the figure
represent the ratio of the viscous heat transfer, calculated
with Eq. (20), and the non-viscous heat transfer. As
expected, the ratio equals 1 for a Prandtl number of 0.

The figure shows that the results of the analytical and
numerical calculations show good agreements. By fitting
a line through the analytical results, the heat transfer can
be expressed as the non-viscous heat transfer multiplied
by a function of Prandtl:

q ¼ qnon-viscous � f ðPrÞ: ð36Þ

The fit function of Prandtl is given by exp½�0:28Pr0:40�.
Combining this with Eq. (18), the heat transfer for the
two-dimensional case can be expressed as:

q ¼ k
oT
ox

				
0

¼ kðT ð0Þ � T flameÞ
1

H

ffiffiffiffiffi
Pe
p

� exp½�0:28Pr0:40�:

ð37Þ
4.2. Cylinder-symmetrical case

The same model is used as for the two-dimensional case,
see Fig. 5. The velocity profiles calculated with the analyt-
ical model for R > H , Eq. (28) for non-viscous flows and
Eqs. (31) and (32) for viscous flows, are validated with
the Fluent calculations. Fig. 12 shows a good agreement
between the analytical and numerical results again.

For small H=R ratios, the strain rate equals a ¼ 2U
H . For

larger H=R ratios this relation for the strain rate a is not
valid. Fig. 13 shows the effect of increasing H=R ratio on
the strain rate a. The factor aH=ð2UÞ is plotted as a function
of H=R. Indeed, for small H=R ratios, aH=ð2UÞ equals one,
so the one-dimensional approximation is a correct one for
H=R < 1. Keeping the distance to the plate H and the
plug flow velocity U constant and decreasing the plug flow
width R, results in an increasing strain rate a. Furthermore,
for a H=R ratio of 4 and higher and a fixed plug flow width
R and velocity U, the distance to the plate H has no influ-
ence on the strain rate a. This was also observed for the
two-dimensional case. The numerical results are quite
accurately predicted by the fitted line aH=ð2UÞ ¼ 18

30
H=Rþ

exp � 18
30

H=R
� 


.
To calculate the heat transfer to the plate, now a dis-

tance to the plate of H ¼ 2 mm and a plug width of
R ¼ 20 mm are chosen. The asterisks in Fig. 14 represent
the numerical calculations compared with the analysis.
The ratio of the viscous heal transfer and the non-viscous
heat flux is plotted against Pr. The non-viscous heat flux
is calculated with Eq. (33), the viscous heat transfer with
Fluent. Again, it can be observed that a small deviation
occurs at Pr ¼ 0 due to numerical inaccuracy; the ratio
between the viscous and non-viscous heat flux is not equal
to 1. The figure shows that for increasing Prandtl number
the heat flux decreases due to an increasing viscous bound-
ary layer. The dots represent the ratio of the viscous heat
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Fig. 14. The ratio of the viscous heat flux and non-viscous heat flux as a
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transfer, calculated with Eq. (35), and the non-viscous heat
transfer. The ratio equals 1 for a Prandtl number of 0.

The results of the analytical and numerical calculations
show very good agreement. The heat transfer can be
expressed as the non-viscous heat flux multiplied by a func-
tion of Prandtl. Therefore, a line is fitted through the ana-
lytical results: f ðPrÞ ¼ exp½�0:35Pr0:40�. The heat transfer
can now be expressed as:

q ¼ k
oT
ox

				
2

¼ qnon-viscous � exp½�0:35Pr0:40�; ð38Þ

where qnon-viscous is given by Eq. (33).
Sibulkin [20] solved the boundary layer equations for

laminar heat transfer to a body of revolution near the stag-
nation point for the cylinder-symmetrical case. For the
Nusselt number in the stagnation point he found:

Nu ¼ 0:763
b
m

� �0:5

2RPr0:4; ð39Þ

where the Nusselt number is the ratio of convective to con-
ductive heat transfer Nu ¼ h2R=k, with h the heat transfer
coefficient [W/(m K)]. The velocity gradient just outside
the boundary layer is defined here as b ¼ ðov=orÞr¼0, see
Fig. 4. This solution is independent of the flame tip-to-plate
Inlet
R

10
Wall

Symmetry

Fig. 15. Schematic overview of the Fluent model. T
spacing. Furthermore, it is only applicable for larger spac-
ing ðH=R > 8Þ [21]. Since our analytical solution, Eqs. (34)
and (35), is derived for closer spacing, H < R, we are not
able to compare our results for the heat transfer with the
ones found by Sibulkin. However, using Fig. 13, we can
compare the velocity gradients. Kays found from potential
flow solutions a velocity gradient for the cylinder-symmet-
rical case of b ¼ 2U=ðpRÞ [22], while Kottke et al. experi-
mentally determined a velocity gradient of b ¼ U=ð2RÞ
[23]. Fig. 13 shows that for larger spacing a constant strain
rate of a ¼ 6U=ð5RÞ can be found. Therefore, since
ðov=orÞr¼0 ¼ a=2, see Eq. (24), the velocity gradient we find
is equal to b ¼ 3U=ð5RÞ.
4.3. Validity range of the analytical solutions

The solutions we found for the heat transfer for the two-
dimensional case (20) and (21) and the cylinder-symmetri-
cal case (34) and (35) are valid for the hot spot of the plate,
so for y ¼ 0 to y ¼ R, or r ¼ 0 to r ¼ R, respectively. With
CFD calculations in Fluent we are able to see how the heat
transfer decays with increasing distance to the symmetry
plane.

The model we used in Fluent for these calculations is
represented in Fig. 15. An isothermal plug flow with a tem-
perature of T ¼ 3000 K and a velocity of U ¼ 75 m=s
enters the domain at a distance H from the plate. The
width of the plug flow is equal to 2R. The hot gases flow
out of the domain at a distance of 10R from the symmetry
axis, to minimize the effect of the pressure boundary at the
side on the plug flow. The top side is a wall and is fixed at a
temperature of 300 K. The parameters of the burnt gases
are the same as for the preceding calculations performed
by Fluent.

The local heatflux at the wall is calculated for the two-
dimensional as well as the cylinder-symmetrical case.
Fig. 16 shows the ratio of the calculated heatflux and the
analytical heatflux at the hotspot as a function of the
normalized distance to the symmetry plane y/R for the
two-dimensional case. The figure shows that at the symme-
try plane the ratio of the numerical and analytical heatflux
is almost equal to 1. The heatflux continuously decreases as
H

Pressure boundaries

R

he different grayscales represent the streamlines.
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Fig. 17. Ratio of the numerically calculated heatflux and the analytical
heatflux at the hotspot as a function of r/R for the cylinder-symmetrical
case.
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Fig. 16. Ratio of the numerically calculated heatflux and the analytical
heatflux at the hotspot as a function of y/R for the two-dimensional case.
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the distance to the symmetry plane increases. From a nor-
malized distance of y=R > 1 a fast decay is observed.

The results for the cylinder-symmetrical case are shown
in Fig. 17. Likewise, the ratio of the numerical and analyt-
ical heatflux is almost equal to 1 at the symmetry axis.
Because the diverging gases have more directions to flow
away from the axis, the strain rate and therefore the heat-
flux decreases less fast within the hotspot area compared to
the two-dimensional case. From a normalized distance of
r=R > 1 again a fast decay is observed. Therefore, for the
two-dimensional as well as the cylinder-symmetrical case
the analytical solutions for the heatflux seem to hold
for the hotspot region. An error of atmost 10% is made
at the edge of the plug flow for the two-dimensional case.
5. Conclusions

In this paper an analytical expression for the heat trans-
fer of a flame jet to the hotspot with a width of 2R of a flat
plate has been derived. It is shown that knowing the phys-
ical configuration, i.e. velocity of the flow, the distance
from the flame tip to the plate, and width of the flow, the
heat flux can be calculated in an easy way for the case that
the flame is close to the plate. The flame jet is approximated
by an isothermal flow and therefore the effect of chemical
recombination is not taken into account.

The analytical expression is derived by taking into
account only the dominant terms of the conservation equa-
tions. The derivation is done for a two-dimensional as well
as a cylinder-symmetrical case. The geometry is divided in
a region far from the plate to the viscous boundary layer,
�H < x < �xd, and a region from the viscous boundary
layer to the plate, �xd < x < 0. At xd, the solutions of the
velocity profile close to the symmetry plane are linked to
each other. The conservation equation of energy close to
the plate is given by a balance between convection and con-
duction. Implementing the derived velocity relations into
the energy equation and integrating over the domain
results in a relation for the heat transfer to the hot spot
of the plate.

The CFD package Fluent is used to validate the derived
analytical expression with numerical calculations. The
results of the calculations show that the assumptions hold
with regard to which contributions of the conservation
equations are most important in the different regions.
The analytical expressions for the velocity profile close to
the symmetry plane show very good agreement with the
velocity profile calculated with Fluent. Also the heat flux
calculated with the derived analytical expression show
good agreement with the numerical calculations.
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